
LINUXBOT LIBRARY HOWTO

Version 1.0

1. Introduction...................................................................................................................................2
2. Prerequisites and essentials ...........................................................................................................2
2.1 Knowledge prerequisites...........................................................................................................2
2.2 Identify your robot hardware ....................................................................................................3
2.3 Get the most recent version of the library code.........................................................................3
2.4 Compiling and running robot code ...........................................................................................3
3. Initialisation and Port Access functions ........................................................................................4
3.1 accessPorts() .............................................................................................................................4
3.2 resetBot() ..................................................................................................................................5
3.3 Linuxbot Program Template .....................................................................................................5
4. Motion Control Functions.............................................................................................................6
4.1 General Overview .....................................................................................................................6
4.2 setMode() ..................................................................................................................................7
4.3 velMove()..................................................................................................................................7
4.3.1 Open-loop velocity mode (IDLE_MODE)................................................................................8
4.3.2 Closed-loop proportional velocity mode (PV_MODE) ............................................................9
4.3.3 Closed-loop integral velocity mode (IV_MODE).....................................................................9
4.4 posMove() .................................................................................................................................9
4.4.1 Closed-loop position control mode (PC_MODE) ...................................................................10
4.4.2 Closed-loop trapezoidal profile mode (TP_MODE) ...............................................................10
4.5 waitforTPMove() ....................................................................................................................10
4.6 rotate().....................................................................................................................................11
4.7 Motion Control Limit Values - IMPORTANT .......................................................................11
5. Linuxbot Sensor and I/O Library Functions ...............................................................................11
5.1 getSensors().............................................................................................................................11
5.2 setLEDs() ................................................................................................................................12
5.3 getSwitches()...........................................................................................................................12
5.4 getAnalog() .............................................................................................................................12

Alan Winfield, mailto:Alan.Winfield@uwe.ac.uk
Personal home page: http://www.ias.uwe.ac.uk/~a-winfie/

Intelligent Autonomous Systems Laboratory
University of the West of England, Bristol
Coldharbour Lane
BRISTOL

Copyright © University of the West of England, Bristol, 2001

Permission is granted to make copies of this manual providing the copyright notice
and this permission notice are preserved on all copies.  Warranty: none.

mailto:Alan.Winfield@uwe.ac.uk
http://www.ias.uwe.ac.uk/~a-winfie/


The Linuxbot Library HOWTO

Page 2 of 12 Version 1.0

1. Introduction

This howto is for Linuxbot users (i.e. programmers) who wish to make use of the
Linuxbot library functions in the latest version of robot.c (and its companion robot.h).
These library functions provide access to the robot’s sensors and actuators.  To be
more precise, functions are provided for:
•  the motors powering the drive wheels;
•  the robot’s infrared proximity sensors;
•  the motherboard Light Emitting Diodes (LEDs);
•  the motherboard status switches;
•  the robot’s A/D converters (including the battery level monitor), and
•  initialisation of i/o hardware, and library code data structures.

In fact 90% of the code in robot.c is actually concerned with the first group of
functions, for motor control.  The Linuxbot makes use of the powerful HP HCTL1100
motion control devices that, with the robot’s optical shaft encoders, provide a number
of sophisticated closed-loop control modes.  The advantage of these devices is that
they offload the job of low-level closed-loop motor control from the main processor.
Much of the code in robot.c is concerned with initialising and configuring the motion
controller devices for the various closed- (and open-) loop motor control modes.
These motor control functions completely remove the need for the Linuxbot
programmer to have to become familiar with the low-level programming details of the
motion control devices.

Another aim of the Linuxbot library is to allow for common source code across the
hardware variants of the robot, such that setting a simple compile-time #define is all
that is required to re-compile code for different (and future) generations of Linuxbot.

2. Prerequisites and essentials

DO NOT SKIP THIS SECTION

2.1 Knowledge prerequisites

This howto assumes that you have:
a) A basic working knowledge and are comfortable with command-line Linux1.  DO

NOT be tempted to learn command-line Linux on the Linuxbot.  Use a PC instead:
i.e. something more forgiving of Linux newbies.

b) Expertise in C programming, and familiarity with the Linux C programming tools:
gcc, make etc.

c) A robot together with the means to “telnet” log-in via a wireless LAN.  This might
be via a laboratory wireless LAN, or with a simple point-to-point (ad-hoc) LAN
from a laptop to the robot.  The remote workstation, or laptop, can be either MS-
Windows or Linux based, since both have telnet and ftp clients.  You must be
familiar with using telnet and ftp.  To “telnet” log-in you will need to know the IP
address for your robot.

d) You must also be familiar with the procedures for
•  checking, and if necessary changing or re-charging, the robot’s battery;

                                                          
1 Note that the Linuxbot does not run X-windows, so prior familiarity with X in Linux will not help.



The Linuxbot Library HOWTO

Page 3 of 12 Version 1.0

•  powering-up and logging-in remotely, via the wireless LAN and,
•  before the battery becomes too low, safely shutting down Linux and powering

down the robot.

If you feel uncomfortable with any of these aspects then you must seek help before
attempting to use or program a Linuxbot.

2.2 Identify your robot hardware

Before doing anything you first need to identify your robot hardware.  Currently there
are two generations of robot hardware, both of which can be fitted with the Linux o/s.
However the first generation of robot hardware is known as the RASCAL, whereas
the second-generation hardware is known as either LINUXBOT (or synonymously
MOOREBOT).  These two generations of motherboard hardware have a different i/o
port address structure and so code compiled for one will not run on the other.  If you
are in any doubt over which generation robot you have, look for the screen printing on
the motherboard which, with the copyright UWE notice, will either show ‘Rascal’ or
‘Linuxbot’.  Another way of spotting the second-generation Linuxbot hardware is the
presence of the analogue i/o daughterboard mounted in front of the PC/104 stack.

2.3 Get the most recent version of the library code

The most recent version of the Linuxbot library code can be downloaded from the
Linuxbot support web page, on the IAS lab’s web server.  Currently at:
http://www.ias.uwe.ac.uk/~a-winfie/linuxbot/

This will be a zipped file that identifies the version, i.e. robot1_5.zip.  You will need
to ftp this into your home directory on the robot you are using, i.e. /home/username/.
Note that by convention all of the robots are set up with a home directory
/home/robot/ (which has the password “robot”), and the robot library code is placed
into that directory.  If /home/robot/ contains the most recent version of the library then
you just need to copy this into your own home directory.  Please do not be tempted to
compile your own test programs in /home/robot/ as this is reserved as a ‘clean’ copy
of the library and example programs to which all users have access.  Only you will
have access to your own home directory.

Unzip the library code into your home directory as follows:
/home/username$: unzip lib1_5.zip

to unpack files robot.c, robot.h and the various example test programs.  There will
also be a readme file with general notes about recent updates.

2.4 Compiling and running robot code

For simple programs you might just #include “robot.c” into your own robot program,
in which case you compile as follows:

/home/username$ gcc simple.c –o simple –O

http://www.ias.uwe.ac.uk/~a-winfie/linuxbot/


The Linuxbot Library HOWTO

Page 4 of 12 Version 1.0

this compiles program “simple.c” to executable code “simple”, with compiler
optimisation switched off (-O), as advised by the Linux io port-programming mini-
howto.

Of course for more sophisticated applications you will prefer to compile “robot.c”
separately, in which case you just #include “robot.h” in your own program file(s).
You can then use “make” to manage the compilation and linkage process (but this
isn’t a tutorial on gcc or make).

If you now try and run this code by, for instance, typing “simple” you will find that
the program will in all likelihood fail, either with a nice error message (if you used the
recommended code for requesting port access, described below in section 3).  Or (if
you didn’t) with a rather less elegant code dump.  The reason for this is
straightforward: in Linux you need to have super-user privileges to be able to access
i/o ports.  (Because Linux is a multi-user o/s, then having multiple users all directly
accessing the same i/o ports would clearly be a disaster.)

Thus, before you can try out your robot program, you need to become the super-user,
using the command “su”.  By convention, the Linuxbots are installed with a null root
password (yes I know this sounds crazy, but these are battery-powered robots).  Thus,
just type:

/home/username$ su
/home/username#

whereupon the prompt character changes from $ to #, to show that you are now root.
You may now run your program as follows:

/home/username# simple

Or, as a background task:
/home/username# simple &

Once you have tested your program by, presumably, observing the behaviour of the
robot, you can kill the program with Ctrl-C (if it’s a foreground task) or by using the
command “kill”, if it’s a background task.  To use kill you will need the process ID
(PID) no, which you can get by using the command “ps”.  Its then a good idea to exit
super-user mode by typing Ctrl-D (or logout), to go back to editing or compilation.

Thus, to reiterate.  It is good practice to always log-in under your own username, then
in your home directory undertake any editing, program maintenance and compilation.
Just become super-user to test run code, but exit super-user mode to return to editing
and compilation.  Do not be tempted to login and do everything as root.  If you do,
you are much more likely to damage o/s files, in which case you’ll have some system
administration to do to repair the damage.  Worse still, you may damage other user’s
work.

3. Initialisation and Port Access functions

3.1 accessPorts()

/* Request Linux to allow access to the I/O ports.  Return non-zero



The Linuxbot Library HOWTO

Page 5 of 12 Version 1.0

   value PORT_ACCESS_OK if access is granted, or 0 is access is
   denied.  Note: Access is only allowed from a process with root
   privileges (ie superuser). */
int accessPorts( void );

Any program that needs to access i/o ports directly must first request permission from
the o/s; as already mentioned above the program also needs to be run as super-user
otherwise Linux will not grant permission.  The Linuxbot library encapsulates the
code to request port i/o permission in the function accessPorts().

3.2 resetBot()

/* Full Reset of the Robot */
void resetBot( robot *Bot )
{
   hardReset(); /* First hard reset, and enable motors */
   initBotData( Bot ); /* then initialise robot data structure */
   softReset( Bot ); /* soft reset, and go into idle mode */
   initFilter( Bot ); /* initialise motion cntrllr filter params */
   openStop( Bot ); /* make sure we're stopped */
   setLEDs( 0 ); /* and finally clear the LEDs */
}

The function resetBot(), shown in full above, places the robot into an initialised state,
with the motors enabled, but stopped, and the motion controllers in idle (i.e. open-
loop) control mode.  The first function called, hardReset(), asserts the physical reset
pin on the motion controller devices and also enables the Linuxbot motors.  The
second function, initBotData( Bot ), initialises the robot data structure which is used
by (almost) all Linuxbot library functions.  It follows therefore that before calling
resetBot() we must first declare a data structure of typedef robot.

The third function call, softReset( Bot ), performs a soft reset of the two motion
control devices, initialises their registers and places them in ‘idle’ (i.e. open-loop)
mode.  The motion controller devices contain digital filters, used by the various
closed-loop control modes, and the function call, initFilter( Bot ), initialises the filter
parameters to the values in the Bot data structure.  These values are set (by the call to
initBotData( Bot )) to default values which, for most purposes, give good closed-loop
control performance.  Thus most programmers will never need to modify the motion
controller digital-filter parameters.

Programmers who do want to modify the digital filter parameters are first advised to
refer to the HCTL1100 motion controller technical data, in order to fully understand
the four filter parameters (sample time T, gain K, zeroes A and poles B).  To set new
values the programmer would simply change the values in data structure Bot, then
call initFilter( Bot ), before issuing any motion control commands.  For details of
data structure typdef robot, and to see the default values for the four filter parameters
see the header file robot.h.

The function resetBot() finally forces the motors to stop (in open-loop mode), by
calling openStop( Bot ), then clears the motherboard LEDs by calling setLEDS( 0 ).

3.3 Linuxbot Program Template



The Linuxbot Library HOWTO

Page 6 of 12 Version 1.0

Using the functions and data structure described above we have a basic program
template, which programmers are advised to use for all Linuxbot applications, as
follows:

/* Linuxbot program template */

#include <stdlib.h> /* needed for printf() */

#define LINUXBOT 1 /* or #define RASCAL 1 */
#include "robot.c" /* or #include "robot.h" */

int main( void )
{

robot Bot; /* declare data structure Bot */

if ( !accessPorts() ) /* request access to i/o ports */
{

printf("Port access denied.. root privileges needed!\n");
}
else
{

resetBot( &Bot ); /* perform general reset */

/* now command the Linuxbot. . . */

}
}

4. Motion Control Functions

4.1 General Overview

Since the Linuxbot is a differential drive robot, it follows that each drive wheel can be
independently controlled.  In fact, each drive motor has its own HCTL1100 motion
controller.  It is important therefore for the Linuxbot programmer to be able to
identify the left and right drive wheels, and the ‘front’ of the robot, since these are – in
effect – defined by the motion control library functions.

Figure 1 below orients the Linuxbot.

PC/104
stack

A/D
board

Front

Left
Wheel

Right
Wheel

status switches

Fig 1  Linuxbot Orientation



The Linuxbot Library HOWTO

Page 7 of 12 Version 1.0

Now the HCTL1100 motion controller devices provide one open-loop and four
closed-loop control modes.  The Linuxbot library provides functions for all five
modes of operation.  The four closed-loop modes further divide into two groups:
velocity control and position control.  In velocity control modes the controllers act to
maintain a constant velocity, whereas in position control modes the controllers aim to
move the drive wheels through a specified distance.  The five control modes are
summarised in the table below.

Motion control mode Library mode selector Mode type
Open-loop mode IDLE_MODE open-loop = idle mode
Proportional Velocity mode PV_MODE velocity control
Integral Velocity mode IV_MODE velocity control
Position Control mode PC_MODE position control
Trapezoidal Profile mode TP_MODE position control

At the lowest level the closed-loop control modes operate at the level of shaft-encoder
quadrature counts.  However, the Linuxbot library provides functions to convert real-
world velocities (in metres per second) and positions (in metres) to low-level
quadrature values.  This howto only describes the top-level real-world value motion
control functions, on the basis that the Linuxbot programmer will rarely, if ever, need
to access the quadrature value functions directly.  Programmers who do wish to use
the low-level motion control functions are referred to the robot.c source code.

The top-level motion control functions are described in the following sections.

4.2 setMode()

/* Select one of the five operating modes for the motion controllers,
   the default case is Idle (ie open-loop) mode. */
void setMode( robot *Bot, int mode );

The function setMode() must be called with one of the two mode values listed in the
table above, i.e. IDLE_MODE, PV_MODE, IV_MODE, PC_MODE or
TP_MODE.  If any other value is provided for the second (mode) parameter, then the
function will default to IDLE_MODE.

Note that if open-loop motion control only is required then setMode() is unnecessary,
since the general reset and initialisation function resetBot() leave the robot in
IDLE_MODE.

4.3 velMove()

/* Execute a move at given real number velocities, in m/s, for the
   left and right wheels respectively.

   This function uses either one of the two closed-loop velocity
   modes: Proportional velocity mode or Integral velocity mode, or
   if we are in idle mode, then use (the highly inaccurate) open-loop
   PWM control move.

   If the robot is in any other mode, then do not attempt a move, and
   return with the non-zero WRONG_MODE_ERROR.  Otherwise return 0



The Linuxbot Library HOWTO

Page 8 of 12 Version 1.0

   (success).
*/
int velMove( robot *Bot, float LeftV, float RightV );

The velMove() function is used to command the robot to move, in either open-loop
mode (IDLE_MOVE), closed-loop proportional velocity mode (PV_MODE) or
closed-loop integral velocity mode (IV_MODE).  The function setMode() must have
been called first to set the motion control mode (but setMode() does not have to be
called before every call to velMove(), only when a change of motion control mode is
required).

All three velocity modes need the target left and right drive wheel velocities to be
supplied as the 2nd and 3rd parameters in the function call, respectively.  These are
floating point values in metres/second.  Positive values drive the wheels in the
forward direction (refer to figure 1), so supplying two equal positive value drives the
robot forward in an approximately straight line2.  Two equal negative values drive the
robot in reverse.

Thus, to drive the robot forward at 1m/s, in integral velocity mode:
setMode( &Bot, IV_MODE );
velMove( &Bot, 1.0, 1.0 );

Or, to turn clockwise on the spot, at 2cm/s, again in integral velocity mode:
setMode( &Bot, IV_MODE );
velMove( &Bot, 0.02, -0.02 );

It is important for the programmer to understand that after the velMove() function has
been executed the robot will continue to move at the given velocity forever, or until
another velMove() (or resetBot()) function is executed with different velocity values.
Thus, if the robot is moving when the control program is killed, the robot will in all
likelihood continue to move until it collides with an arena wall.  It is therefore a good
idea to have a simple ‘allstop’ program to hand, ready to run from the Linux
command line, ready for this eventuality.

4.3.1 Open-loop velocity mode (IDLE_MODE)

In open-loop velocity mode the real value velocities supplied to velMove() are simply
scaled and supplied directly to the PWM registers for the left and right motion
controllers.  Thus, the robot will move only at very rough approximations of the
requested velocities, depending on factors such as the roughness of the floor, or any
incline of the surface over which the robot is moving.  In fact, in open-loop mode at
very low values of command velocity the robot may simply not move at all – because
there is insufficient torque from the motors.  It is also the case that differences
between the left and right motor-gearbox and wheel assemblies will be exaggerated in
open-loop mode, so that a straight line move will be much less straight than in the
closed-loop modes.

                                                          
2 In open-loop mode this will not be a straight line at all, but the two closed-loop control modes will
achieve better straight-line performance.  Remember that the closed-loop motion control acts only on
each motor-gearbox and shaft-encoder assembly, so slight differences in wheel size between left and
right wheels, or wheel alignment, or gearbox ratios, etc, will not be corrected.



The Linuxbot Library HOWTO

Page 9 of 12 Version 1.0

4.3.2 Closed-loop proportional velocity mode (PV_MODE)

This is a simple proportion velocity mode in which the left and right motion
controllers will attempt to achieve the required velocity wheel velocities as rapidly as
possible.  This can result in very jerky motion, from stopped, and while this may not
be a problem in rotational moves, it can cause unstable motion (i.e. wheelies) in a
straight line.  For this reason, for most velocity moves the integral velocity mode is
strongly recommended.

4.3.3 Closed-loop integral velocity mode (IV_MODE)

In the integral velocity mode the motion controller devices ramp up to the desired
wheel velocities, at a given acceleration, giving rise to much smoother transitions
between different velocities.  The acceleration value is provided by the robot data
structure and is initialised, by resetBot(), to the default value in robot.h: 0.8m/s/s.

If a different value of acceleration is required, just modify the robot data structure
member mpss before the call to velMove(), as follows:

 setMode( &Bot, IV_MODE );
Bot.mpss = 0.5; /* accelerate at 0.5m/s/s.. */
velMove( &Bot, 1.0, 1.0 ); /* to 1.0m/s */

4.4 posMove()

/* Execute a closed-loop move, by real-number distances LeftD and
   RightD metres, for the left and right wheels respectively.

   This function uses either position control mode, or trapezoidal
   profile mode and assumes that one of these modes has already been
   selected.  If neither of these modes has been selected, then do
   not attempt to move, and return with the non-zero value
   WRONG_MODE_ERROR.  Otherwise return 0 (success).
*/
int posMove( robot *Bot, float LeftM, float RightM );

The posMove() function commands the robot to move each wheel a given distance, in
metres, in either position control (PC_MODE) or trapezoidal profile (TP_MODE)
modes.  The function setMode() must have been called first to set the motion control
mode (but setMode() does not have to be called before every call to posMove(), only
when a change of motion control mode is required).

Unlike the velocity move, a call to posMove() should cause the robot to move the
required distance and then stop.  In fact posMove() will return immediately, but the
robot will stop (under control of the motion controllers) sometime later.  It is therefore
the programmer’s responsibility to ensure that no further motion control commands
are issued before a position move has been completed.

Positive values will move the wheels forward (as defined in figure 1), so to move the
robot forward 1m in trapezoidal profile mode, for instance, requires the following
code:

setMode( &Bot, TP_MODE );
posMove( &Bot, 1.0, 1.0 );



The Linuxbot Library HOWTO

Page 10 of 12 Version 1.0

Or, to rotate the robot 2cm anticlockwise, in position control mode, requires:
setMode( &Bot, PC_MODE );
posMove( &Bot, -0.02, 0.02 );

4.4.1 Closed-loop position control mode (PC_MODE)

In position control mode the motion controllers attempt to move the required distance
as fast as possible, giving rise to very hard accelerations and decelerations.  While this
may be acceptable for small rotational moves (for example) its use for long straight-
line moves is deprecated.  For such moves the trapezoidal profile move is strongly
recommended.

4.4.2 Closed-loop trapezoidal profile mode (TP_MODE)

In trapezoidal profile mode the motion controllers attempt to move the required
distance using given values for acceleration, deceleration and maximum velocity.  The
velocity during the move thus follows a trapezoidal profile, as shown in figure 2
below.

The two values for the maximum velocity, and the acceleration/deceleration, are
provided by the robot data structure and are initialised, by resetBot(), to default
values in file robot.h.  The default maximum velocity is 0.5m/s and the default
acceleration and deceleration is 0.8m/s/s.

If different values for the maximum velocity, acceleration and deceleration are
required, just modify the robot data structure members maxmps and mpss before the
call to posMove(), as follows:

 setMode( &Bot, TP_MODE );
Bot.maxmps = 0.2; /* move at 0.2 m/s and */
Bot.mpss = 0.5; /* accelerate at 0.5m/s/s */
posMove( &Bot, 1.0, 1.0 ); /* move 1m */

Since it is important that a trapezoidal profile move completes before another one is
initiated, a special function is provided to wait until a trapezoidal profile move is
complete.

4.5 waitforTPMove()

/* Wait for a trapezoidal move to complete.  This function MUST be
   called before the 2nd or subsequent trapezoidal profile moves. */
void waitforTPMove( robot *Bot );

velocity

time

Figure 2  Trapezoidal velocity profile



The Linuxbot Library HOWTO

Page 11 of 12 Version 1.0

When called after a trapezoidal profile move, this function simply loops, checking for
completion of the trapezoidal moves (on both wheels), and not returning until both
moves have been completed.

4.6 rotate()

/* Execute a Rotation on-the-spot, by Rot degrees.  Rot MUST be
   within the range -360.0 .. +360.0.  This function assumes we
   are already in one of the two closed loop position control modes.

   Return 0 on success, or WRONG_MODE_ERROR if we're in the wrong
   mode.
*/
int rotate( robot *Bot, float Rot );

The function rotate() is really just a wrapper function for posMove(), and just
converts from the required rotation, in degrees, to position values taking account of
the physical dimensions of the robot.  Positive values for Rot produce a clockwise
rotation, negative values an anti-clockwise rotation.

4.7 Motion Control Limit Values - IMPORTANT

As a Linuxbot programmer you should be aware that the software might appear to
allow unlimited acceleration or deceleration, or very high velocity values.  However,
the physical limitations of the motor/gearboxes, motor torques, the mass of the robot
and other real-world issues clearly limit the maximum values for motion control
parameters.

Although the Linuxbot library does provide a degree of hard limiting at the lowest
level by virtue of fixed register sizes, maximum register values typically far exceed
the capabilities of the physical hardware.  You should therefore, in your own robot
applications code, check that values supplied to library motion control functions
remain within reasonable bounds and cannot runaway.

The following table suggests advisory maximum values for velocities, accelerations
and single position moves.

Motion control parameter Maxima Control Modes
Maximum open-loop velocities ± 1.0m/s IDLE_MODE
Maximum closed-loop velocities ± 1.5m/s PV_MODE, IV_MODE
Maximum integral-velocity or
trapezoidal-profile acceleration

± 1.0m/s/s IV_MODE, TP_MODE

Maximum trapezoidal-profile mode
velocity

± 1.5m/s TP_MODE

Maximum single position move ± 10m PC_MODE, TP_MODE

5. Linuxbot Sensor and I/O Library Functions

5.1 getSensors()



The Linuxbot Library HOWTO

Page 12 of 12 Version 1.0

/* Get the value of the robot's bump sensors */
int getSensors( void );

On the Linuxbot3 there are four digital inputs for infra-red (or other) sensors, and
these inputs are mapped to the bottom four bits, (bits 0..3), of the integer value
returned by getSensors().  The programmer will need to determine which proximity
sensors are connected to which input bits (by trail and error, for instance).  See the
example program avoid.c for code which makes use of getSensors().

5.2 setLEDs()

/* Set a value to the robot's LEDs,
   for the RASCAL there are 8 LEDS, so this can be a value 0..0xff,
   for the LinuxBot/MooreBot there are just 5 LEDS, so values 0..0x1f
*/
void setLEDs( int value );

The Linuxbot has 5 motherboard mounted LEDs, which may be set by the bottom five
bits, (bits 0..4), of the parameter value.

5.3 getSwitches()

/* Get the value of the robot's status switches */
int getSwitches( void );

The Linuxbot has four switches mounted at the front of the motherboard (refer to fig
1).  These switches may be read by getSwitches() and the values will be returned in
the bottom four bits, (bits 0..3), of the integer value returned.

5.4 getAnalog()

/* Get analog (A/D) inputs...
   For the LinuxBot/MooreBot there are 8 12-bit A/D channels (0..7).
   For the RASCAL there are 4 8-bit A/D channels (0..3).
*/
float getAnalog( int channel );

The Linuxbot has 8 12-bit A/D channels, of which channel 0 may be configured – via
a jumper on the daughterboard - to read the battery voltage.  getAnalog() performs an
A/D conversion for the given channel, and returns the real-number result in the range
0 to 4.096V.

                                                          
3 But not the RASCAL


	1.	Introduction
	2.	Prerequisites and essentials
	2.1	Knowledge prerequisites
	2.2	Identify your robot hardware
	2.3	Get the most recent version of the library code
	2.4	Compiling and running robot code
	3.	Initialisation and Port Access functions
	3.1	accessPorts()
	3.2	resetBot()
	3.3	Linuxbot Program Template
	4.	Motion Control Functions
	4.1	General Overview
	4.2	setMode()
	4.3	velMove()
	4.3.1	Open-loop velocity mode (IDLE_MODE)
	4.3.2	Closed-loop proportional velocity mode (PV_MODE)
	4.3.3	Closed-loop integral velocity mode (IV_MODE)
	4.4	posMove()
	4.4.1	Closed-loop position control mode (PC_MODE)
	4.4.2	Closed-loop trapezoidal profile mode (TP_MODE)
	4.5	waitforTPMove()
	4.6	rotate()
	4.7	Motion Control Limit Values - IMPORTANT
	5.	Linuxbot Sensor and I/O Library Functions
	5.1	getSensors()
	5.2	setLEDs()
	5.3	getSwitches()
	5.4	getAnalog()

